Abstract

The incompressible Navier–Stokes equation is considered in the limit of rapid rotation (small Ekman number). The analysis is limited to horizontal scales small enough so that both horizontal and vertical velocities are comparable, but the horizontal velocity components are still in geostrophic balance. Asymptotic analysis leads to a pair of nonlinear equations for the vertical velocity and vertical vorticity coupled by vertical stretching. Statistically stationary states are maintained against viscous dissipation by boundary forcing or energy injection at larger scales. For thermal forcing direct numerical simulation of the reduced equations reveals the presence of intense vortical structures spanning the layer depth, in excellent agreement with simulations of the Boussinesq equations for rotating convection by Julien et al. (1996).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call