Abstract
We show that the polynomial unbiased finite impulse response (UFIR) functions derived by Shmaliy establish a new class of a one-parameter family of discrete orthogonal polynomials (DOP). The most noticeable distinction of these polynomials with respect to the classical Meixner, Charlier, Hahn, and Krawtchouk DOP is dependence on only one parameter—the length of finite data. This makes them highly attractive for L-order blind fitting and analysis of informative processes. Properties of the UFIR polynomials are considered in detail along with the moments and recurrence relation. Examples of applications are given to blind approximation and phoneme pitch analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.