Abstract
Over the past decades, the research on optically active polymers (OAPs) has significantly grown, and extensive studies have been carried out on their syntheses, conformations, and applications. The most commonly used OAPs are based on natural products such as sugars or amino acids, which limits their scope. A broader range of applications can be achieved by synthesizing lab-tailored monomers, which allow precise control over structure and properties. This research developed a four-step synthetic route to a previously unreported chiral [2.2]paracyclophane-based epoxide monomer. An aluminum catalyst and an alkylammonium initiating system were applied and optimized for its polymerization to provide access to a novel class of chiral polyethers. Furthermore, we demonstrated the copolymerization viability of the (4-[2.2]paracyclophanyl)oxirane monomer using phthalic anhydride.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.