Abstract

Since integration by parts is an important tool when deriving energy or entropy estimates for differential equations, one may conjecture that some form of summation by parts (SBP) property is involved in provably stable numerical methods. This article contributes to this topic by proposing a novel class of A stable SBP time integration methods which can also be reformulated as implicit Runge-Kutta methods. In contrast to existing SBP time integration methods using simultaneous approximation terms to impose the initial condition weakly, the new schemes use a projection method to impose the initial condition strongly without destroying the SBP property. The new class of methods includes the classical Lobatto IIIA collocation method, not previously formulated as an SBP scheme. Additionally, a related SBP scheme including the classical Lobatto IIIB collocation method is developed.

Highlights

  • Based on the fact that integration by parts plays a major role in the development of energy and entropy estimates for initial boundary value problems, one may conjecture that the summation by parts (SBP) property [8,47] is a key factor in provably stable schemes

  • Having the conjecture “stability results require an SBP structure” in mind, this article provides additional insights to this topic by constructing new classes of SBP schemes, which reduce to the classical Lobatto IIIA and Lobatto IIIB methods if that quadrature rule is used

  • All A stable classical Runge-Kutta methods based on Radau and Lobatto quadrature rules can be formulated in the framework of SBP operators

Read more

Summary

Introduction

Based on the fact that integration by parts plays a major role in the development of energy and entropy estimates for initial boundary value problems, one may conjecture that the summation by parts (SBP) property [8,47] is a key factor in provably stable schemes. Turning to SBP methods in time [2,19,25], a class of linearly and nonlinearly stable SBP schemes has been constructed and studied in this context, see [18,41,42]. If the underlying quadrature is chosen as Radau or Lobatto quadrature, these Runge-Kutta schemes are exactly the classical Radau IA, Radau IIA, and Lobatto IIIC methods [29]. Having the conjecture “stability results require an SBP structure” in mind, this article provides additional insights to this topic by constructing new classes of SBP schemes, which reduce to the classical Lobatto IIIA and Lobatto IIIB methods if that quadrature rule is used. All A stable classical Runge-Kutta methods based on Radau and Lobatto quadrature rules can be formulated in the framework of SBP operators. Instead of using simultaneous approximation terms (SATs) [5,6] to impose initial conditions weakly, these new schemes use a strong imposition of initial conditions in combination with a projection method [22,26,27]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.