Abstract

A new chiral cyclopalladated ferrocenyl imine catalyst (called 4a2) was designed and synthesized, and its self-assembly catalytic polymeric brush supported on silicon (denoted as Si@PB4a2) was also fabricated by surface-initiated atom transfer radical polymerization (ATRP) and characterized. The catalytic properties of monomer 4a2 in homogeneous and Si@PB4a2 in heterogeneous in Heck and Suzuki cross-coupling were investigated, respectively. They exhibited higher catalytic activity in Heck, and Suzuki coupling reactions in homogeneous and heterogeneous using water as the solvent, and the catalytic activity of Si@PB4a2 with a turn of number (TON,11933 molproduct/molcat) in heterogeneous was 200 times more than that of 4a2 in homogeneous due to the ordered arrangement of the catalyst supported on silicon. Si@PB4a2 had high recyclability, i.e., at least eight runs and six runs, in Suzuki and Heck coupling reactions, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.