Abstract

Guided wave electromagnetic acoustic transducers (EMATs) have a significant role in non-destructive testing and structural health monitoring. It can generate horizontally polarized shear waves propagating axially or circumferentially to characterize the shape and orientation of pipeline defects. This work proposes a new Chevron pattern-like coil structure design with a periodic permanent magnet (PPM) EMAT configuration. This specific design of the EMAT coil can generate a bi-directional shear horizontal wave (SH-wave) and reduce the side lobes. An optimal Chevron angle of coil wires assists in generating orthogonal propagatingwaveforms. These phenomena lead to the constructive interference of propagating waves and develop a resulting wave along the horizontal direction. A 3D FEM modeling and simulation have been carried out and validated with experimental results. The proposed EMAT results are compared with the conventional racetrack PPM EMAT model, which shows a significant improvement over conventional EMATs. A prototype of this proposed EMAT has been developed. It can be used to inspect surface defects in applications such as fuel transportation pipelines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call