Abstract

We integrate three fundamental physical processes, i.e. star formation, structure formation, and radiative transfer inside galaxies, into our chemodynamical model. Our model simulates dynamical evolution in N -body SPH method, and simulates star formation as well as radiative gas cooling, feedback processes from stellar wind and supernovae. Furthermore, we implement radiative transfer in the galaxy so that we can simulate gas photoionization heating by ultraviolet (UV) photons emitted by OB stars inside the galaxy, and so that we can obtain the whole spectral energy distribution after dust absorption without assumption on dust, gas and stellar geometry, even if the simulated galaxy has very irregular morphology. We simulate seven galaxies. Our model galaxies with photoionization by UV photons show two differences from model galaxies without them. UV photons invoke gas outflow from the system, and result in smaller star formation rate at z z = 4.5 and 3.0 > z > 2.8, and satisfies the criteria of BzK at 3.0 > z > 2.0. Then the model galaxy enters into the short passively evolving ERO phase at z = 1.6 and finally evolves to a passively evolving elliptical galaxy. In all our simulations, evolutionary path from LBGs at z = 4, through the BzK phase at 3 > z > 1.8, to passively evolving elliptical galaxies at z < 0.8, are universal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.