Abstract
In the early part of this century G. Julia and P. Fatou extensively studied the iteration of functions on the complex plane. More recently Hans Brolin reopened the investigation. In this paper, we are interested in the F set which is the set of points at which the family of iterates of a given rational function R is not normal and in a measure which is in some sense naturally imposed on the F set by the iterates of R. We construct a sequence of probability measures via the inverse functions of the iterates of R and almost any starting point. The measure of primary interest is the weak limit of such sequences. These weak limits are supported by F and have certain invariance properties. We establish that this weak limit measure is unique and is ergodic with respect to the transformation R on the F set for a large class of rational functions. In the course of the proof of uniqueness we develop expressions for the logarithmic potential function and for the energy integral of F. We also establish inequalities for the capacity of the F set which become equalities for the polynomial case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.