Abstract
In this paper, we consider the following \(\mathcal{L}\)-difference equation$$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$where \(\Phi\) is a monic polynomial (even), \(\deg\Phi\leq2\), \(\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0\), are complex numbers and \(\mathcal{L}\) is either the Dunkl operator \(T_\mu\) or the the \(q\)-Dunkl operator \(T_{(\theta,q)}\). We show that if \(\mathcal{L}=T_\mu\), then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if \(\mathcal{L}=T_{(\theta,q)}\), then the \(q^2\)-analogue of generalized Hermite and the \(q^2\)-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences satisfying the \(\mathcal{L}\)-difference equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.