Abstract

Barrington, Straubing and Therien (1990) conjectured that the Boolean AND function can not be computed by polynomial size constant depth circuits built from modular counting gates, i.e., by CC^0 circuits. In this work we show that the AND function can be computed by uniform probabilistic CC^0 circuits that use only O(log n) random bits. This may be viewed as evidence contrary to the conjecture. As a consequence of our construction we get that all of ACC^0 can be computed by probabilistic CC^0 circuits that use only O(log n) random bits. Thus, if one were able to derandomize such circuits, we would obtain a collapse of circuit classes giving ACC^0=CC^0. We present a derandomization of probabilistic CC^0 circuits using AND and OR gates to obtain ACC^0 = AND o OR o CC^0 = OR o AND o CC^0. AND and OR gates of sublinear fan-in suffice. Both these results hold for uniform as well as non-uniform circuit classes. For non-uniform circuits we obtain the stronger conclusion that ACC^0 = rand-ACC^0 = rand-CC^0 = rand(log n)-CC^0, i.e., probabilistic ACC^0 circuits can be simulated by probabilistic CC^0 circuits using only O(log n) random bits. As an application of our results we obtain a characterization of ACC^0 by constant width planar nondeterministic branching programs, improving a previous characterization for the quasipolynomial size setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call