Abstract
The utility of semantic change detection in myriad change scenarios has garnered considerable attention in contemporary research; however, its applicability in monitoring alterations in wetland ecosystems remains incompletely elucidated. To surmount the constraints associated with binary change detection methodologies—chiefly their insufficiency in the extraction of bi-temporal attributes—we introduced the Bi-Temporal Semantic Reasoning UNet++ (Bi-SRUNet++) algorithm. This algorithm leverages the architectural strengths of UNet++ as its foundational network to precisely delineate features pertinent to multi-class change detection. As a preliminary step, the study focused on the Dongting Lake wetland in China and conducted an analysis of feature trends predicated upon the monthly Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI), as derived from Landsat 8 data spanning 2021–2022. Subsequently, the optimal temporal phases for change detection were ascertained through differential analyses between NDWI and NDVI metrics. Implementing the Bi-SRUNet++ algorithm on a pair of Sentinel-2 images, captured during the optimal phases, yielded augmented change information. Comparative evaluations reveal that the Bi-SRUNet++ algorithm, conceptualized on the framework of Bi-Temporal Semantic Reasoning Network (Bi-SRNet), surpasses the performance indices of its counterpart Semantic Segmentation and Change Detection Late Fusion (SSCD-l). Furthermore, the incorporation of the UNet++ backbone network amplifies the algorithm's capacity for semantic feature extraction, thereby enhancing the efficacy of Bi-SRUNet++ in wetland change detection. The analysis divulges that the total altered area of Dongting Lake during the 2021–2022 period amounts to 1187.97 km2, comprising a water loss of 1186.16 km2, a 715.34 km2 transformation into vegetation, and a conversion of 469.96 km2 into mudflats. The codes and partial dataset in this paper are available at: https://github.com/vivianmiumiu/Bi-SRUNetplusplus-for-SCD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.