Abstract

A method has been developed for creating a bioactive coating on titanium by alkaline and heat treatment, and shown that it forms a thin layer of hydroxyapatite (HA) on the surface of implants when soaked in simulated body fluid. A series of 70 cementless primary total hip arthroplasties using this coating technique on a porous titanium surface was performed, and followed up the patients for a mean period of 4.8 years. There were no instances of loosening or revision, or formation of a reactive line on the porous coating. Although radiography just after operation showed a gap between the host bone and the socket in over 70% of cases, all the gaps disappeared within a year, indicating the good osteoconduction provided by the coating. Alkaline-heat treatment of titanium to provide a thin HA coating has several advantages over plasma-spraying, including no degeneration or absorption of the HA coating, simplicity of the manufacturing process, and cost effectiveness. In addition, this method allows homogeneous deposition of bone-like apatite within a porous implant. Although this was a relatively short-term study, treatment that creates a bioactive surface on titanium and titanium alloy implants has considerable promise for clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call