Abstract

In this second part, the methodology for optimal tumor-targeting is further explored, employing a patient-inspired hepatic artery system which differs significantly from the idealized configuration discussed in Part I. Furthermore, the fluid dynamics of a microsphere supply apparatus is also analyzed. The best radial catheter positions and particle-release intervals for tumor targeting were determined for both the idealized and patient-inspired configurations. This was accomplished by numerically analyzing generated particle release maps (PRMs) for ten equally spaced intervals throughout the pulse. As in Part I, the effects of introducing a catheter were also investigated. In addition to the determination of micro-catheter positioning and, hence, optimal microsphere release, a microsphere-supply apparatus (MSA) was analyzed, which transports the particles to the catheter-nozzle, considering different axial particle injection functions, i.e., step, ramp, and S-curve. A refined targeting methodology was developed which demonstrates how the optimal injection region and interval can be determined with the presence of a catheter for any geometric configuration. Additionally, the less abrupt injection functions (i.e., ramp and S-curve) were shown to provide a more compact particle stream, making them better choices for targeting. The results of this study aid in designing the smart micro-catheter (SMC) in conjunction with the MSA, bringing this innovative treatment procedure one step closer to implementation in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.