Abstract

A new car-following model is proposed based on recurrent neural network (RNN) to effectively describe the state change and road traffic congestion while the vehicle is moving. The model firstly gives a full velocity difference car-following model according to the driver’s reaction sensitivity and relative velocity, and then takes the vehicle position and velocity as the input parameters to optimize the safe distance between the front and rear vehicles in the car-following model based on RNN model. Finally, the effectiveness of the above model is validated by building a simulation experiment platform, and an in-depth analysis is conducted on the relationship among influencing factors, e.g., relative velocity, reaction sensitivity, headway, etc. The results reveal that, compared with traditional car-following models, the model can quickly analyze the relationship between initial position and velocity of the vehicle in a shorter time and thus obtain a smaller safe distance. In the case of small velocity difference between the front and rear vehicles, the running velocity of the front and rear vehicles is relatively stable, which is conducive to maintaining the headway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.