Abstract

A DNS (Direct Numerical Simulation) model for solid, liquid, and gas three-phase flow, mainly targeting to simulate the nucleation processes in wet granulation, is presented in this paper. A liquid–gas two-phase flow is solved by using the CIP (Constrained Interpolation Profile) method, which is one of the CFD multi-phase solvers, and a solid particle flow is solved by DEM (Discrete Element Method) separately. The interaction between fluid (liquid and gas) and solid phases is taken into account by coupling CFD and DEM. A new model is developed to account for the capillary force exerted on particles, i.e. the surface tension force which pulls a particle along with the solid–liquid–gas contact line, and the accuracy of the model is examined. Although the main focus in this study is to develop a CFD–DEM coupling and the capillary force models for wet granulation, some simulation results are also presented to see the droplet behaviour often encountered in a wet granulation process, i.e. the droplet penetration into a static particle bed as well as the droplet impingement onto a dynamic particle bed. The simulation results are compared with the experimental results in the literature and it shows a good agreement in terms of tendency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.