Abstract

A new calix[4]pyrrole-based macrocycle, meso-tetramethyl-tetrakis{4-[2-(ethylthio)ethoxy]phenyl}calix[4]pyrrole, 7, has been synthesized and fully characterized. Unlike other calixpyrrole derivatives that show selective interaction with anions, calixpyrrole 7 described in the present work forms stable complexes with both metal cations and anions. The thermodynamics of complexation of this ditopic calixpyrrole derivative with metal cations (Hg2+ and Ag+) and the fluoride anion in nonaqueous solutions have been determined by titration calorimetry, and the host-guest composition has been investigated by using conductance measurements at 298.15 K. 1H NMR studies provide clear evidence about the sites of complexation of 7 with the ionic species, which show that the NH groups are taking part in the complexation of this ligand with the fluoride anion while the sulfur donor atoms are responsible for the interaction with metal cations. Using the present data on 7 and structurally related analogues (1-6), the complexation behavior is discussed comparatively from the thermodynamic point of view. Possessing four sulfur-containing pendent arms, 7 displays an enhanced hosting ability for Hg2+ in acetonitrile. As compared with 1, the calixpyrrole derivative, 7, shows a unique interaction with fluoride among the anions investigated in acetonitrile and dimethyl sulfoxide. As far as the fluoride complex is concerned, the medium effect is assessed in terms of the thermodynamics of the transfer of reactants and product from acetonitrile (reference solvent) to dimethyl sulfoxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.