Abstract

In this article, electrochemical synthesis methods were used to construct a series of novel heat-resistant energetic materials with a tetracyclic structure bridged by azo-bis (1,2,4-triazole). From a molecular structure perspective, the synthesized 1,2-bis(5-(1H-tetrazol-5-yl)-1H-1,2,4-triazol-3-yl)-diazene (H4AzTT) exhibits zwitterionic properties and can exhibit a tetravalent structure when used as a nitrogen rich anion. In terms of physicochemical properties, H4AzTT and its energetic salts (M−AzTT) exhibit excellent energy performance and thermal stability due to its high nitrogen content and large conjugated structure. Among them, K4-AzTT·3H2O possess the highest decomposition temperature of 428 °C. Specifically, traditional chemical synthesis of tetracyclic structure may lead to ring breakage or by-products, while electrochemical synthesis methods are efficient and controllable, and allow for the direct synthesis of energetic salts (potassium, lithium, sodium, guanidine) by simply changing the electrolyte. Electrochemical testing and in situ ATR-SEIRAS analysis indicate that the electrochemical synthesis of M−AzTT precedes the OER (Oxygen Evolution Reaction). Therefore, a high yield of 65 % and a high Faraday efficiency of 81.5 % at 1.7 V vs. RHE were achieved under alkaline conditions. In summary, this study not only constructs super heat-resistant energetic compounds, but also represents a new breakthrough in the field of electrochemical synthesis of energetic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call