Abstract

We present a new branch-and-cut algorithm for the capacitated vehicle routing problem (CVRP). The algorithm uses a variety of cutting planes, including capacity, framed capacity, generalized capacity, strengthened comb, multistar, partial multistar, extended hypotour inequalities, and classical Gomory mixed-integer cuts. For each of these classes of inequalities we describe our separation algorithms in detail. Also we describe the other important ingredients of our branch-and-cut algorithm, such as the branching rules, the node selection strategy, and the cut pool management. Computational results, for a large number of instances, show that the new algorithm is competitive. In particular, we solve three instances (B-n50-k8, B-n66-k9 and B-n78-k10) of Augerat to optimality for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.