Abstract

In this paper, we propose a bounded degree hierarchy of both primal and dual conic programming relaxations involving both semi-definite and second-order cone constraints for solving a nonconvex polynomial optimization problem with a bounded feasible set. This hierarchy makes use of some key aspects of the convergent linear programming relaxations of polynomial optimization problems (Lasserre in Moments, positive polynomials and their applications, World Scientific, Singapore, 2010) associated with Krivine–Stengle’s certificate of positivity in real algebraic geometry and some advantages of the scaled diagonally dominant sum of squares (SDSOS) polynomials (Ahmadi and Hall in Math Oper Res, 2019. https://doi.org/10.1287/moor.2018.0962; Ahmadi and Majumdar in SIAM J Appl Algebra Geom 3:193–230, 2019). We show that the values of both primal and dual relaxations converge to the global optimal value of the original polynomial optimization problem under some technical assumptions. Our hierarchy, which extends the so-called bounded degree Lasserre hierarchy (Lasserre et al. in Eur J Comput Optim 5:87–117, 2017), has a useful feature that the size and the number of the semi-definite and second-order cone constraints of the relaxations are fixed and independent of the step or level of the approximation in the hierarchy. As a special case, we provide a convergent bounded degree second-order cone programming (SOCP) hierarchy for solving polynomial optimization problems. We then present finite convergence at step one of the SOCP hierarchy for classes of polynomial optimization problems. This includes one-step convergence for a new class of first-order SDSOS-convex polynomial programs. In this case, we also show how a global solution is recovered from the level one SOCP relaxation. We finally derive a corresponding convergent conic linear programming hierarchy for conic-convex semi-algebraic programs. Whenever the semi-algebraic set of the conic-convex program is described by concave polynomial inequalities, we show further that the values of the relaxation problems converge to the common value of the convex program and its Lagrangian dual under a constraint qualification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call