Abstract

A new boundary integral equation formulation is presented for two-dimensional linear elasticity problems for isotropic as well as anisotropic solids. The formulation is based on distributions of line forces and dislocations over a simply connected or multiply connected closed contour in an infinite body. Two types of boundary integral equations are derived. Both types of equations contain boundary tangential displacement gradients and tractions as unknowns. A general expression for the tangential stresses along the boundary in terms of the boundary tangential displacement gradients and tractions is given. The formulation is applied to obtain analytic solutions for half-plane problems. The formulation is also applied numerically to a test problem to demonstrate the accuracy of the formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.