Abstract

This paper derives a new boundary integral equation (BIE) formulation for plane elastic bodies containing cracks and holes and subjected to mixed displacement/ traction boundary conditions, and proposes a new boundary element method (BEM) based upon this formulation. The basic unknown in the formulation is a complex boundary function H(t), which is a linear combination of the boundary traction and boundary displacement density. The present BIE formulation can be related directly to Muskhelishvili's formalism. Singular interpolation functions of order r−1/2 (where r is the distance measured from the crack tip) are introduced such that singular integrand involved at the element level can be integrated analytically. By applying the BEM, the interaction between a rigid circular inclusion and a crack is investigated in details. Our results for the stress intensity factor are comparable with those given by Erdogan and Gupta (1975) and Gharpuray et al. (1990) for a crack emanating from a stiff inclusion, and with those by Erdogan et al. (1974) for a crack in the neighborhood of a stiff inclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.