Abstract

A new bound on the minimum distance of q-ary cyclic codes is proposed. It is based on the description by another cyclic code with small minimum distance. The connection to the BCH bound and the Hartmann–Tzeng (HT) bound is formulated explicitly. We show that for many cases our approach improves the HT bound. Furthermore, we refine our bound for several families of cyclic codes. We define syndromes and formulate a Key Equation that allows an efficient decoding up to our bound with the Extended Euclidean Algorithm. It turns out that lowest-code-rate cyclic codes with small minimum distances are useful for our approach. Therefore, we give a sufficient condition for binary cyclic codes of arbitrary length to have minimum distance two or three and lowest code-rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.