Abstract
Recently, there has been a growing interest in integer-valued time series models, especially in multivariate models. Motivated by the diversity of the infinite-patch metapopulation models, we propose an extension to the popular bivariate INAR(1) model, whose innovation vector is assumed to be time-dependent in the sense that the mean of the innovation vector is linearly increased by the previous population size. We discuss the stationarity and ergodicity of the observed process and its subprocesses. We consider the conditional maximum likelihood estimate of the parameters of interest, and establish their large-sample properties. The finite sample performance of the estimator is assessed via simulations. Applications on crime data illustrate the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.