Abstract

We prove that the sum of t boolean-valued random variables sampled by a random walk on a regular expander converges in total variation distance to a discrete normal distribution at a rate of O(λ/t1/2−o(1)), where λ is the second largest eigenvalue of the random walk matrix in absolute value. To the best of our knowledge, among known Berry-Esseen bounds for Markov chains, our result is the first to show convergence in total variation distance, and is also the first to incorporate a linear dependence on expansion λ. In contrast, prior Markov chain Berry-Esseen bounds showed a convergence rate of O(1/√t) in weaker metrics such as Kolmogorov distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.