Abstract
In this paper, we extend the original belief rule-base inference methodology using the evidential reasoning approach by i) introducing generalised belief rules as knowledge representation scheme, and ii) using the evidential reasoning rule for evidence combination in the rule-base inference methodology instead of the evidential reasoning approach. The result is a new rule-base inference methodology which is able to handle a combination of various types of uncertainty.Generalised belief rules are an extension of traditional rules where each consequent of a generalised belief rule is a belief distribution defined on the power set of propositions, or possible outcomes, that are assumed to be collectively exhaustive and mutually exclusive. This novel extension allows any combination of certain, uncertain, interval, partial or incomplete judgements to be represented as rule-based knowledge. It is shown that traditional IF-THEN rules, probabilistic IF-THEN rules, and interval rules are all special cases of the new generalised belief rules.The rule-base inference methodology has been updated to enable inference within generalised belief rule bases. The evidential reasoning rule for evidence combination is used for the aggregation of belief distributions of rule consequents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.