Abstract

Accurate magnetic measurements in radio frequency capacitively coupled plasmas (CCP) are challenging due to the presence of inherently strong electric fields and relatively weak magnetic fields. In this work, a new B-dot probe circuit is presented, comprising two variable capacitors in a tunable series resonance circuit, with a center-tapped, step-up transformer. The output characteristics of the probe are predicted using two distinct equivalent circuit models, one for the differential mode and the other for the common mode. A Helmholtz coil and a Faraday cup are used for experimental validation of the predicted probe output. By tuning the two variable capacitors in the circuit, the magnetic probe can achieve improved signal-to-noise ratio by amplifying the inductive signal, while suppressing capacitive coupling interference. Using the newly designed probe, magnetic measurements in typical CCP are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.