Abstract

A new crystallographic orientation relationship (OR) between delta-ferrite and austenite has been observed in solidification microstructures of 304L and 309S austenitic stainless steels and a ternary Fe-Cr-Ni alloy. Evidence for the new OR was obtained from electron diffraction patterns in transmission electron microscopy (TEM). This relationship, (111)fcc//(110)bcc and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaai4waiqaig% dagaqeaiaaigdacaaIWaGaaiyxamaaBaaaleaaieaacaWFMbGaa83y% aiaa-ngaaeqaaOGaai4laiaac+cacaGGBbGabGymayaaraGaaGymai% aaicdacaGGDbWaaSbaaSqaaiaa-jgacaWFJbGaa83yaaqabaaaaa!4508! $$[\bar 110]_{fcc} //[\bar 110]_{bcc} $$ , has not been previously reported for bcc-fcc systems. The 〈110〉fcc//#x2329;110〉bcc alignment is distinctive among known bcc-fcc ORs. The new OR is related to the Kurdjumov-Sachs (K-S) and Nishiyama-Wassermann (N-W) ORs by relative rotations of 35.26 and 30 deg, respectively, about the normal to the parallel close-packed planes. In 304L fabricated by laser-engineered net shaping (LENS), delta-ferrite with the new OR was found to coexist in the microstructure with both K-S and N-W oriented ferrite, but in separate austenite grains and with less frequent occurrence. In gas-tungsten arc (GTA) welds of 309S and the Fe-Cr-Ni alloy, the new OR was the only one observed within a few grains, whereas ferrite within other grains did not establish an apparent OR with the austenite matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.