Abstract
A new auxiliary equation method, constructed by a first order nonlinear ordinary differential equation with at most an eighth-degree nonlinear term, is first proposed for exploring more exact solutions to nonlinear evolution equations. Being concise and straightforward, the method, with the aid of symbolic computation, is applied to the Sharma–Tasso–Olver model, and some new exact solitary wave solutions are obtained. The approach is also applicable to searches for exact solutions of other nonlinear evolution equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.