Abstract

Mass localization is a crucial problem in computer-aided detection (CAD) system for the diagnosis of suspicious regions in mammograms. In this paper, a new automatic mass detection method for breast cancer in mammographic images is proposed. Firstly, suspicious regions are located with an adaptive region growing method, named multiple concentric layers (MCL) approach. Prior knowledge is utilized by tuning parameters with training data set during the MCL step. Then, the initial regions are further refined with narrow band based active contour (NBAC), which can improve the segmentation accuracy of masses. Texture features and geometry features are extracted from the regions of interest (ROI) containing the segmented suspicious regions and the boundaries of the segmentation. The texture features are computed from gray level co-occurrence matrix (GLCM) and completed local binary pattern (CLBP). Finally, the ROIs are classified by means of support vector machine (SVM), with supervision provided by the radiologist׳s diagnosis. To deal with the imbalance problem regarding the number of non-masses and masses, supersampling and downsampling are incorporated. The method was evaluated on a dataset with 429 craniocaudal (CC) view images, containing 504 masses. Among them, 219 images containing 260 masses are used to optimize the parameters during MCL step, and are used to train SVM. The remaining 210 images (with 244 masses) are used to test the performance. Masses are detected with 82.4% sensitivity with 5.3 false positives per image (FPsI) with MCL, and after active contour refinement, feature analysis and classification, it obtained 1.48 FPsI at the sensitivity 78.2%. Testing on 164 normal mammographic images showed 5.18 FPsI with MCL and 1.51 FPsI after classification. Experiments on mediolateral oblique (MLO) images have also been performed, the proposed method achieved a sensitivity 75.6% at 1.38 FPsI. The method is also analyzed with free response operating characteristic (FROC) and compared with previous methods. Overall, the proposed method is a promising approach to achieve low FPsI while maintaining a high sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.