Abstract

A new algorithm to generate three-dimensional (3D) mesh for thin-walled structures is proposed. In the proposed algorithm, the mesh generation procedure is divided into two distinct phases. In the first phase, a surface mesh generator is employed to generate a surface mesh for the mid-surface of the thin-walled structure. The surface mesh generator used will control the element size properties of the final mesh along the surface direction. In the second phase, specially designed algorithms are used to convert the surface mesh to a 3D solid mesh by extrusion in the surface normal direction of the surface. The extrusion procedure will control the refinement levels of the final mesh along the surface normal direction. If the input surface mesh is a pure quadrilateral mesh and refinement level in the surface normal direction is uniform along the whole surface, all hex-meshes will be produced. Otherwise, the final 3D meshes generated will eventually consist of four types of solid elements, namely, tetrahedron, prism, pyramid and hexahedron. The presented algorithm is highly flexible in the sense that, in the first phase, any existing surface mesh generator can be employed while in the second phase, the extrusion procedure can accept either a triangular or a quadrilateral or even a mixed mesh as input and there is virtually no constraint on the grading of the input mesh. In addition, the extrusion procedure development is able to handle structural joints formed by the intersections of different surfaces. Numerical experiments indicate that the present algorithm is applicable to most practical situations and well-shaped elements are generated. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.