Abstract

AbstractAn automatic auroral boundary determination algorithm is proposed in this study based on the partial auroral oval images from the Global Ultraviolet Imager (GUVI) aboard the Thermosphere–Ionosphere‐Mesosphere Energetics and Dynamics satellite and the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) aboard the Defense Meteorological Satellite Program (DMSP F16). This algorithm based on the fuzzy local information C‐means clustering segmentation can be used to extract the auroral oval poleward and equatorward boundaries from merged images with filled gaps from both GUVI and SSUSI. Both extracted poleward and equatorward boundary locations are used to fit the global shape of the auroral oval with a off‐center quasi‐elliptical fitting technique. Comparison of the extracted auroral oval boundaries with those identified from the DMSP SSJ observations demonstrates that this new proposed algorithm can reliably be used to construct the global configuration of auroral ovals under different geomagnetic activities at different local times. The statistical errors of magnetic latitudes of the fitted auroral oval boundaries were generally less than 3° at 2 sigma and indicate that the the fitted boundaries agree better with b2e and b5e than b1e and b6 boundaries. This proposed algorithm provides us with a useful tool to extract the global shape and position of the auroral oval from the partial auroral images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call