Abstract

Anaplastic thyroid cancers (ATC) are among the most aggressive human neoplasms with a dire prognosis and a median survival time of few months from the diagnosis. The complete absence of effective therapies for ATC renders the identification of novel therapeutic approaches sorely needed. Chromosomal instability, a feature of all human cancers, is thought to represent a major driving force in thyroid cancer progression and a number of mitotic kinases showing a deregulated expression in malignant thyroid tissues are now held responsible for thyroid tumor aneuploidy. These include the three members of the Aurora family (Aurora-A, Aurora-B, and Aurora-C), serine/threonine kinases that regulate multiple aspects of chromosome segregation and cytokinesis. Over the last few years, several small molecule inhibitors targeting Aurora kinases were developed, which showed promising antitumor effects against a variety of human cancers, including ATC, in preclinical studies. Several of these molecules are now being evaluated in phase I/II clinical trials against advanced solid and hematological malignancies. In the present review we will describe the structure, expression, and mitotic functions of the Aurora kinases, their implications in human cancer progression, with particular regard to ATC, and the effects of their functional inhibition on malignant cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.