Abstract
We estimate the degree 2 long‐wavelength gravitational variations C21, S21, and C20 using Earth rotational changes, caused by mass redistribution and movement within the Earth system. These rotation changes are accurately measured by space geodetic techniques. Wind and oceanic current effects are removed from the Earth rotation series using atmospheric and oceanic circulation data‐assimilating models. The results are compared with LAGEOS Satellite Laser Ranging (SLR) determinations and also with geophysical contributions estimated from atmospheric surface pressure, continental water storage, and nonsteric sea level changes. Our conjecture is that using Earth rotational changes to infer long‐wavelength gravitational variations has the potential to be more accurate than satellite‐based techniques in some cases. Consistent with this, we find that C21 and S21 variations from this study are in better agreement with geophysical observations than LAGEOS SLR determinations of C21 and S21. However, the Earth rotation‐derived estimate of C20 variation is probably less accurate than the LAGEOS‐derived result owing to the large atmospheric wind contribution to length‐of‐day variation which must first be removed and the natural sensitivity of LAGEOS to C20 changes via precession of the satellite node.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.