Abstract

ABSTRACTArtificial neural networks afford great potential in learning and stability against small perturbations of input data. Using artificial intelligence techniques and modelling tools offers an ever-greater number of practical applications. In the present study, an iterative algorithm, which was based on the combination of a power series method and a neural network approach, was used to approximate a solution for high-order linear and ordinary differential equations. First, a suitable truncated series of the solution functions were substituted into the algorithm's equation. The problem considered here had a solution as a series expansion of an unknown function, and the proper implementation of an appropriate neural architecture led to an estimate of the unknown series coefficients. To prove the applicability of the concept, some illustrative examples were provided to demonstrate the precision and effectiveness of this method. Comparing the proposed methodology with other available traditional techniques showed that the present approach was highly accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.