Abstract

The efficiency of titanium dioxide (TiO2)-based film solar cells fabricated by combined spray and electroplating methods was improved by forming metal bridges in the pores between TiO2 nanoparticles. The interfaces between TiO2 nanoparticles and metal bridges formed Schottky contacts, which minimized recombination of electron-hole pairs and increased electron transfer. A maximum efficiency of 4.38% was achieved for cells plated at 50 mA and 55 °C. This efficiency is higher than that reported for solar cells with a similar structure [Saehana et al., AIP Conf. Proc. 1284, 154 (2010); 1415, 163 (2011); IJBAS/IJENS 11, 15 (2011)]. We also identified that both current and temperature influence the morphology of the metal bridges and efficiency of the solar cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.