Abstract

The power efficiency of coded modulation schemes in additive white Gaussian noise depends on the signal space distribution of their most common error events. Symbol error probability calculation allowing for the pairwise interaction of these error events is discussed. Two optimality criteria are considered for detectors. The first minimizes the probability of symbol error for each symbol decision. This is called the symbol-to-symbol detector. The second (which is superior) is the maximum likelihood sequence detector (MLSD). A lower bound for the symbol-to-symbol detector and an approximation to the MLSD symbol error probability are described. The theoretical performance difference between these two detectors is given. The results are more accurate than minimum squared Euclidean distance predictions, especially at low and intermediate signal-to-noise ratios. The MLSD symbol error probability approximation is obtained for considerably less cost than computer simulation and gives more insight into the signal space structure of the scheme being analyzed. Numerical results are presented for a continuous phase modulation (CPM) example. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.