Abstract

Formation micro imager (FMI) can directly reflect changes of wall stratums and rock structures. Conventionally, FMI images mainly are analyzed with manual processing, which is extremely inefficient and incurs a heavy workload for experts. Iranian reservoirs are mainly carbonate reservoirs, in which the fractures have an important effect on permeability and petroleum production. In this paper, an automatic planar feature recognition system using image processing was proposed. The dip and azimuth of these features are detected using this algorithm to identify more precise permeability and the career of fluid in reservoirs. The proposed algorithm includes three main steps; first, pixels representing fractures are extracted from projected FMI image into location matrices x and y and the corresponding value matrix f(x, y). Then, two vectors X and Y as the inputs of CFTOOL of MATLAB are produced by the combination of these three matrices. Finally, the optimum combination of sine function is fitted to the sine shape of pattern to identify the dip and azimuth of the planar feature. The system was tested with real interpretation FMI rock images. In the experiments, the average recognition error of the proposed system is about 0.9% for the azimuth detection and less than 3.5% for the dip detection and the correlations between the actual dip and azimuth with the determined cases are more than 90% and 97% respectively. Moreover, this automatic system can significantly reduce the complexity and difficulty in the planar feature detection analysis task for the oil and gas exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.