Abstract

The paper reports the deterministic effects of a focusing electric field in improving the purity and yield of the arc-generated carbon nanotubes (CNTs). The method utilizes a focusing electrostatic field, which was superimposed on the arc symmetrically. The focusing voltage was varied from 0 to 1200 V at steps of 200 V and a number of cathode deposits, thus generated, were collected and thoroughly analysed in their totality with the help of weight balance, Raman spectroscopy, transmission electron microscopy and thermogravimetry. With the optimally configured focusing electric field, the arc generator is found to utilize nearly 85% of the consumed anode material, for converting into cathode deposit consisting of CNTs, as compared with about 35% in the conventional arc plasma method. The sample prepared under optimized conditions exhibited high oxidation temperature (851 °C) in the thermogravimetric analysis, negligible D band intensity along with a reduced G band line-width (14 cm−1) in the Raman spectrum, confirming the presence of high purity CNTs with a high relative yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.