Abstract

As a result of the search for alternatives to the known methods for the synthesis of PLA/vinyl polymer block copolymers, a new approach based on the “iniferter” concept was demonstrated in this article. In this approach, the introduction of a group that was capable of forming radicals and initiating radical polymerization into the polylactide (PLA) chain was conducted. Then, the obtained functional PLA was heated in the presence of a radically polymerizable monomer. The tetraphenylethane (TPE) group was chosen as a group that could dissociate to radicals. PLA with a TPE group in the middle of the chain was prepared in several steps as follows: (1) the synthesis of 4-(2-hydroxyethoxy)benzophenone (HBP-ET); (2) the polymerization of lactide, which was initiated with HBP-ET; and (3) the coupling of HBP-ET chains under UV radiation to form TPE-diET_PLA. A “macroiniferter”, i.e., TPE-diET_PLA, was used to initiate the polymerization of acrylonitrile (AN) by heating substrates at 85 °C. 1H and 13C NMR and SEC analyses of the products indicated that the triblock copolymer PLA-PAN-PLA formed and thus confirmed the assumed mechanism of the initiation of AN polymerization, which relied on the addition of the radical that formed from TPE (linked with the PLA chain) to the monomer molecule. Copolymerizations were performed with the application of prepared TPE-diET_PLA with three different Mn’s (1400, 2200, and 3300) and with different AN/PLA ratios, producing copolymers with varied compositions, i.e., with AN/LA ratios in the range of 2.3–11.1 and Mn’s in the range of 5100–9400. It was shown that the AN/LA ratio in the copolymer was increasable by the applied excess of AN with respect to the PLA macroiniferter in the feed and that more AN monomer was able to be introduced to PLA with shorter chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.