Abstract
In this study, structural features in the Aegean Sea were investigated by application of Cellular Neural Network (CNN) and Cross-Correlation methods to the gravity anomaly map. CNN is a stochastic image processing technique, which is based on template optimization using neighbourhood relationships of pixels, and probabilistic properties of two-Dimensional (2-D) input data. The performance of CNN can be evaluated by various interesting real applications in geophysics such as edge detection, data enhancement and separation of regional/residual potential anomaly maps. In this study, CNN is used in edge detection of geological bodies closer to the surface, which are masked by other structures with various depths and dimensions. CNN was first tested for (prismatic) synthetic examples and satisfactory results were obtained. Subsequently, CNN/Cross-Correlation maps and bathymetric features were evaluated together to obtain a new structural map for most of the Aegean Sea. In our structural map, the locations of the faults and basins are generally in accordance with the previous maps from restricted areas based on seismic data. In the southern and southeastern parts of the Aegean Sea, E–W trending faults cut NE–SW trending basins and faults, similar to on-shore Western Anatolia. Also, in the western, central and northern parts of the Aegean Sea, all of these structures are truncated by NE-trending faults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.