Abstract
A lot of methods were created in last decade for the spatio-temporal analysis of multi-electrode array (MEA) neuronal data sets. All these methods were implemented starting from a channel to channel analysis, with a great computational effort and onerous spatial pattern recognition task. Our idea is to approach the MEA data collection from a different point of view, i.e. considering all channels simultaneously. We transform the 2D plus time MEA signal in a mono-dimensional plus time signal and elaborate it as a normal 1D signal, using the Space-Amplitude Transform method. This geometrical transformation is completely invertible and allows to employ very fast processing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.