Abstract

Inkjet-printing is a suitable method to generate patterned structures from solvents containing active components. However, the process of inkjet-printing imposes severe limitations on the properties of the inkjet ink. This paper presents a new approach to solvent systems suitable for inkjet-printing common organic solar cell materials, poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C 61 as active layers in solar cells. Typically, low boiling point chlorinated solvents are used to dissolve P3HT and PCBM because both components are well soluble in these materials. During inkjet-printing, nozzle clogging due to evaporation of the ink in the inkjet print head is reduced when a high boiling point solvent is incorporated. Solar cells with active layers that were printed from an ink with a solvent system of chlorobenzene and trichlorobenzene showed power conversion efficiencies of 2.4% when active layer was dried at 130 °C. This compares to 2.6% for spin-coated solar cells from the same materials. In addition, devices with printed passive and printed active layers were prepared and power conversion efficiencies of 1.5% were achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.