Abstract
We give a new (inductive) proof of the classical Frobenius--Young correspondence between irreducible complex representations of the symmetric group and Young diagrams, using the new approach, suggested in \cite{OV, VO}, to determining this correspondence. We also give linear relations between Kostka numbers that follow from the decomposition of the restrictions of induced representations to the previous symmetric subgroup. We consider a realization of representations induced from Young subgroups in polylinear forms and describe its relation to Specht modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.