Abstract

Abstract Neutron stars are formed in core-collapse supernova explosions, where a large number of neutrinos are emitted. In this paper, supernova neutrino light curves are computed for the cooling phase of protoneutron stars, which lasts a few minutes. In the numerical simulations, 90 models of the phenomenological equation of state with different incompressibilities, symmetry energies, and nucleon effective masses are employed for a comprehensive study. It is found that the cooling timescale is longer for a model with a larger neutron star mass and a smaller neutron star radius. Furthermore, a theoretical expression of the cooling timescale is presented as a function of the mass and radius and it is found to describe the numerical results faithfully. These findings suggest that diagnosing the mass and radius of a newly formed neutron star using its neutrino signal is possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call