Abstract

The principal purpose of this contribution is to illustrate the potential of compressed sensing electron tomography for the characterisation of nanoparticulate materials that are vulnerable to electron beam damage. Not only is there growing interest in nanoparticles of organic materials in medical and allied contexts, there is also the need to investigate nanoparticles and nanoclusters of metals supported on biological macromolecular entities in the context of drug delivery. A qualitative account of the principles of electron tomography is outlined with illustrations from the field of heterogeneous catalysis, where electron beam damage is less of an issue, and an appendix deals with more quantitative aspects of how compressed sensing promises to expand the range of samples that have hitherto been accessible to investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.