Abstract

We study the Subnormal Completion Problem (SCP) for 2-variable weighted shifts. We use tools and techniques from the theory of truncated moment problems to give a general strategy to solve SCP. We then show that when all quadratic moments are known (equivalently, when the initial segment of weights consists of five independent data points), the natural necessary conditions for the existence of a subnormal completion are also sufficient. To calculate explicitly the associated Berger measure, we compute the algebraic variety of the associated truncated moment problem; it turns out that this algebraic variety is precisely the support of the Berger measure of the subnormal completion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.