Abstract

Abstract Static jar tests are widely known and used in the oil and gas industry for quantitative screening and determining the minimum effective dose (MED) for scale inhibitors. However, when dealing with very low saturated brines, challenges are faced in the laboratory to replicate the same scaling environment found in the oilfield facilities and often brines have to be stressed in order to induce scaling in the laboratory tests. This paper proposes an efficient approach for quick chemical selection and recommendation for low scaling environments. The method proposed has been developed and successfully applied for the selection and recommendation of scale inhibitors in low to mild saturated brines. This technique involves the combination of the standard static jar test with Scanning Electron Microscopy (SEM) and UV-Visible Spectrophotometry (UV/VIS). The two case studies presented here shows two fields with low to mild barium sulphate (BaSO4) and calcium carbonate (CaCO3) scaling issues. This novel approach of has been used to screen and identify the best scale inhibitor in terms of cost effective peformance. Post-experimental analyses such as the Scanning Electron Microscope/Energy Dispersive X-Ray Diffraction Spectrometry (SEM/EDXS) permitted the investigation and assessment of the type of scale formed, and the mechanisms of inhibiton for each scale inhibitor chemistry tested. This combined approach removed any discrepancies obtained by visual observations and/or Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) efficiency measurements. Furthermore, the UV-Visible Spectrophotometry was used in conjunction to the static SEM/EDXS method, in order to reassess the MED for the scale inhibitor candidates using the kinetic turbidity test (KTT) method. Results obtained from the KTT method complimented those from the combined static with ICP and SEM imaging, providing a quick understanding of the scale formation kinetics and inhibition efficiency. To summarise, results have shown that different techniques can be used as a fast screening process for the MED using different scale inhibitors at low scaling regimes. Therefore, the static SEM and KTT methods are recommended as a thorough screening process for determining the optimum MED and selection of the best fit for purpose scale inhibitor. This opposes the conventional dynamic scale loop (DSL) approach, which would require severe alterations to the brine chemistry in order to get a scaling blank within a minimum 2-hour-period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call