Abstract

In this study, AlOOH nanostructures were successfully synthesized using the solvothermal method at 180?C. The effects of the pH of the solution (3, 4.5, 6.5, 10 and 12.5) on the synthesized samples were investigated systematically in detail, when ethanol and NaOH were the solvent and pH-adjusting agent, respectively. Fourier transform infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy were used to characterize the synthesized samples. The specific surface area, pore size distribution and pore structure of different AlOOH structures at various pH levels were also discussed in terms of the N2 adsorption/desorption test. According to the experimental results, the FESEM micrographs showed that the products were nanostructures, and the AlOOH nanoparticles larger on increasing the pH from 4.5 to 12.5. The structure characterization revealed that the resulting AlOOH nanostructures were pure and had a well-defined crystalline structure with a crystal size of 9.3?20.5 nm. Furthermore, the boehmite obtained at pH 12.5 exhibited a large surface area of 131 m2 g-1 and a high total pore volume of 1.24 cm3 g-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.