Abstract

A new numerical approach to the solution of two-stage stochastic linear programming problems is described and evaluated. The approach avoids the solution of the first-stage problem and uses the underlying deterministic problem to generate a sequence of values of the first-stage variables which lead to successive improvements of the objective function towards the optimal policy. The model is evaluated using an example in which randomness is described by two correlated factors. The dynamics of these factors are described by stochastic processes simulated using lattice techniques. In this way, discrete distributions of the random parameters are assembled. The solutions obtained with the new iterative procedure are compared with solutions obtained with a deterministic equivalent linear programming problem. It is concluded that they are almost identical. However, the computational effort required for the new approach is negligible compared with that needed for the deterministic equivalent problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.