Abstract
This paper was aimed at introducing a new approach to numerical simulation of two-phase flows by solving the mixture model equations. In this approach, an effective numerical algorithm was developed based on the time splitting projection method to solve the mixture model equations for an incompressible two-phase flow. In this study, a new technique was developed to solve the mixture continuity equation based on the time splitting projection method. One of the advantages of the mixture model is that, in addition to determining the velocities of each phase, it solves only one set of momentum equations and calculates the velocity differences between the phases by solving the relative velocity equation. Accordingly, an extended finite volume vertical two-dimensional numerical model was used to determine the pressure distribution, velocity field and volume fraction of each phase at each time step. The model has been used in various tests to simulate unsteady flow problems. Comparison between numerical results, analytical solutions and experimental data demonstrated a satisfactory performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Computational Fluid Dynamics, An International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.